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BACKGROUND: Polybrominated diphenyl ethers (PBDEs) are flame retardants found in North American household products during the past four deca-
des. These chemicals leach out in dust as products age, exposing individuals daily through inhalation and ingestion. Animal studies suggest that
PBDEs disrupt sex hormones and adversely affect development of the reproductive system.
OBJECTIVES: In the present study, we examined whether there is a link between maternal hair PBDE concentrations and the risk of cryptorchidism
(undescended testes) in male infants; testis descent is known to be dependent on androgens.
METHODS: Full-term male infants were recruited through clinics in Montreal, Toronto, and London, Canada. Boys with cryptorchidism at
3–18months of age (n=137) were identified by pediatric urologists and surgeons; similar-aged controls (n=158) had no genitourinary abnormalities
as assessed by pediatricians. Eight BDE congeners (BDE-28, -47, -99, -100, -153, -154, -183, -209) were measured by GC-MS (gas chromatography–
mass spectrometry) in maternal hair samples collected at the time of recruitment.
RESULTS: The

P
PBDE geometric mean for maternal hair was 45.35 pg/mg for controls and 50.27 pg/mg for cases; the concentrations of three BDEs

(BDE-99, -100, and -154) were significantly higher in cases than controls in unadjusted models. In adjusted models, every 10-fold increase in the con-
centration of maternal hair BDE-99 [OR=2:53 (95% CI: 1.29, 4.95)] or BDE-100 [OR=2:45 (95% CI: 1.31, 4.56)] was associated with more than a
doubling in the risk of cryptorchidism. BDE-154 [OR=1:88 (95% CI: 1.08, 3.28)] was also significant.
CONCLUSIONS: Our results suggest that maternal exposure to BDE-99, -100, and -154 may be associated with abnormal migration of testes in the
male fetus. This may be due to the anti-androgenic properties of the PBDEs. https://doi.org/10.1289/EHP522

Introduction
Cryptorchidism is the failure of one or both testicles to descend
into the scrotum during in utero development of the male fetus
(Barteczko and Jacob 2000). This is one of the most common
(1.8–9%) urogenital abnormalities observed in normal term male
newborns (Virtanen and Toppari 2008). In brief, two stages are
involved in testis migration (Barthold 2008). The first occurs
between gestational weeks 8 and 15, when the testicles travel
from an intra-abdominal perirenal position to the top of the ingui-
nal ring. Late in the third trimester, they then migrate through the
inguinal ring and into the scrotal sac. In certain cases, the testes
do not undergo the final migration until after birth but by 3
months the majority will have descended, spontaneously reducing
the number of cases that require surgery (orchidopexy) to reposi-
tion the testes within the scrotum (Kollin and Ritzén 2014).
Orchidopexy is recommended between ages of 6 and 12 months

to decrease the risk of testicular torsion or trauma, improve fertil-
ity and decrease the risk of testicular neoplasm in adulthood.

Animal and clinical studies have demonstrated that normal
migration of the testes is dependent on both genetic factors and
the in utero hormonal environment (Barthold 2008; Barthold
et al. 2015; Huang et al. 2012; Jensen et al. 2010; Virtanen and
Toppari 2008). The trans-abdominal phase is linked to expression
of two genes: one for the insulin-like peptide-3 (INSL-3) hor-
mone produced by Leydig cells and a second for the INSL-3 re-
ceptor, relaxin-family peptide receptor 2 (RXFP2). The second
inguinal–scrotal phase is thought to be primarily dependent on
androgens produced by the fetal Leydig cells and normal expres-
sion of the androgen receptor. Clinical reports have linked cryp-
torchidism with mutations in the INSL-3, RXFP2, or Androgen
Receptor (AR) genes but only in a small number of cases (Bay
et al. 2011; Feng et al. 2009; Ferlin et al. 2009). Thus, the etiol-
ogy of most cases remains unknown. In a study that evaluated the
risk contribution from genetic versus intrauterine environmental
factors, Jensen et al. (Jensen et al. 2010) found a similar concord-
ance rate in monozygotic and dizygotic twins, providing strong
support for an important role of the intrauterine environment.

There is increasing evidence that maternal exposure to certain
environmental chemicals may have endocrine disrupting activity
at critical stages during testicular development and/or migration
due to the ability of these compounds to cross the placenta and
enter the fetal environment (Bay et al. 2011; Virtanen and
Adamsson 2012). Such chemicals include flame retardants, orga-
nochlorine pesticides, fungicides, dioxins, bisphenol A, and
phthalates, all of which exhibit estrogenic or anti-androgenic
properties in in vitro assays (Balbuena et al. 2013; Christen et al.
2014; Hamers et al. 2006; Harju et al. 2007; Rosenmai
et al. 2014; Rouiller-Fabre et al. 2015; Stoker et al. 2005; Yang
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et al. 2009) and have been linked to genitourinary malformations,
including cryptorchidism, in animal studies (Auger et al. 2014;
Chen et al. 2015; Christiansen et al. 2009; Christiansen et al.
2010; Christiansen et al. 2014; Emmen et al. 2000; van den
Driesche et al. 2012; Welsh et al. 2008). However, evidence for
their effects on cryptorchidism in humans remains controversial.
Many studies have involved small cohorts and have shown possi-
ble, but not significant, associations (Bay et al. 2011; Chevalier
et al. 2015; Cook et al. 2011; Jensen et al. 2015; Koskenniemi
et al. 2015; Virtanen and Adamsson 2012). One small study (62
cases, 68 controls) of a Danish mother–infant cohort reported sig-
nificant associations between breast milk levels of several poly-
brominated diphenyl ether (PBDE) flame retardants measured
1–3months after birth with increased risk of cryptorchidism at
birth (Main et al. 2007). In a parallel Finnish cohort, no associa-
tions were found, despite similar total PBDE levels in breast
milk; however, the PBDE congener profile differed (Krysiak-
Baltyn et al. 2012; Main et al. 2007).

Because of the contradictory reports in the literature, the goal
of the present study was to reexamine the possible association of
maternal PBDE exposure and increased risk of undescended
testes in male infants. We chose a cohort where the cryptorchid
cases were defined by direct observation during orchidopexy.
Mother/child pairs were recruited 3–18months after birth because
testes may spontaneously descend during the first 3–6 postnatal
months and surgery only occurs several months after diagnosis of
cryptorchidism. Because prior studies examined testes descent at
birth, we hypothesized that the previous inconsistent results might
be due, in part, to case misclassification. Thus, this study was
designed to have an unambiguous cohort of cryptorchid male
infants.

Methods and Materials

Participants
A total of 374 mother and child pairs were recruited between the
summer of 2011 and summer of 2014. The research study was
approved by the ethics boards at the different recruitment centers
and all participants signed a written informed consent. The cryp-
torchidism cases (n=200) were recruited at Pediatric Urology
and General Surgery clinics at the Montreal Children’s Hospital
(n=80), the Hospital for Sick Children in Toronto (n=115) and
the London Health Sciences Centre in London, Ontario (n=5)
following diagnosis by pediatric urologists and surgeons.
Diagnosis between centers followed accepted standards: all cen-
ters reviewed and agreed on the diagnostic criteria (Wein et al.
2016). Infants with retractile testes were excluded from the study.
Controls (n=174) were recruited through the Hospital for Sick
Children helpline for questions about pregnancy and breastfeed-
ing (n=51) and at a Montreal community pediatric center
(n=123): pediatricians verified the lack of urogenital abnormal-
ities. Mothers were eligible to participate if they were �18 years
old, had sufficient hair to provide a sample, and had a child who
was between the ages of 3 and 18 months, born full term (�37
weeks gestation) with normal weight (�2,500 g), diagnosed with
or without cryptorchidism, and with no other genitourinary mal-
formations or genetic syndromes. Participation rate was >95%.

Mothers in both groups filled out a questionnaire with in-
formation pertaining to home and work environment, general
medical history, reproductive history (including paternal and
familial history of cryptorchidism), breastfeeding, diet, alcohol
consumption, smoking, medication usage and maternal socio-
demographics (age, birth place, ethnicity, education, country
of birth, marital status and income). At the time of data anal-
yses, 79 participants were excluded because of missing

questionnaire data, leaving 137 cases and 158 controls for a
total of 295 participants.

In both case and control groups, standardized genital exams
of the infants were conducted by pediatricians soon after birth to
obtain information on testicular position (descended vs. unde-
scended), with verification of cryptorchidism by pediatric urolo-
gists. Testicles were initially defined as nonpalpable or palpable.
Nonpalpable testeswere further classified as vanishing, abdominal,
or atrophic at the timeof surgery. Palpable testeswere considered to
be inguinal or prescrotal. Ectopic testicles were defined to have a
perineal, femoral, prepubic, contralateral scrotal, or superficial
inguinal pouch location. The superficial inguinal pouch loca-
tion was only identified at the time of surgery because this
cannot be distinguished from an inguinal testis on physical
exam alone. For all cryptorchid children, a chart review was
carried out post-surgery by a urologist and the research coor-
dinator to obtain details of the precise location of the testes.

Hair Sample Collection
Hair was used as a matrix to assess the PBDE exposure of moth-
ers and children because previous studies reported a positive cor-
relation between serum and hair PBDE concentrations, especially
for tetra- to hexa BDE congeners (Poon et al. 2014; Zheng et al.
2014). Sufficient samples of hair for the PBDE assay were col-
lected at the time of recruitment from all mothers and approxi-
mately a third of the babies (many babies had too little or no
hair): maternal–child paired samples were collected for 57 cases
and 50 controls. Using stainless steel scissors, 50–100mg of hair
was collected from the mothers and as much hair as possible
from the babies: the hair was cut within 1 cm from the scalp at
the posterior vertex (Aleksa et al. 2012). The hair samples were
stored in sealed envelopes in the dark at 4�C until assayed at the
Hospital for Sick Children.

Hair Sample Analyses
To standardize the hair analyses, PBDEs were measured in the
first 3–4 cm of hair closest to the root. The methodology for adult
and child hair PBDE measurements was established previously
(Aleksa et al. 2012; Carnevale et al. 2014; Poon et al. 2014). In
brief, samples were rinsed with Milli-Q water and dried with pa-
per towels to remove dust from the hair surface (Poon et al.
2015). The hair was then weighed (5–30mg) and finely cut into
1–2mm pieces. Samples were analyzed by GC-MS for eight
PBDE congeners: BDE-28, -47, -99, -100, -153, -154, -183, and
-209. Quantification was performed using five-point calibration
curves whereby standards (Wellington Laboratories) were added
to extracts of a single pool of “blank” hair because it contained
negligible levels of the eight PBDEs being measured. The peak
area ratios of congeners BDE-28 to -183 to their internal standard
(F-BDE-69) and BDE-209 to its standard (13C12-BDE-209) were
calculated. The area ratios in blank hair were subtracted from the
sample area ratios prior to plotting against the calibration curve
to quantify the PBDEs. The PBDE levels were corrected for dry
weight of each sample. The limits of detection (LOD) ranged
from 1 to 4 pg/mg and the limits of quantification (LOQ) from 3
to 12 pg/mg. The percent recoveries ranged from 100% to 120%
with the exception of BDE-47 (135%), and the percent CVs
ranged from 13% to 19% with the exception of BDE-209 (33%).
Machine-read values were used for concentrations that fell
between the LOD and LOQ. Values below the LOD were
imputed using multiple imputation (see below). Analyses were
limited to those congeners with quantification frequencies >50%
(BDE-28, -47, -99, -100, -153, -154, and -209) and their sum.
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With a quantification frequency of 40.2%, BDE-183 was not con-
sidered in statistical analyses.

Statistical Analyses
PBDE concentrations were heavily right-skewed and were thus
log10-transformed to reduce the influence of outliers. We used
Pearson’s correlations and analysis of variance (ANOVA) to esti-
mate bivariate associations. Multivariable associations between
maternal hair PBDE concentrations and cryptorchidism case sta-
tus were estimated using multiple logistic regression. Because the
proportional odds assumption did not hold for all analyses
(p<0:05), we used multinomial (rather than ordinal) logistic
regression to evaluate associations with cryptorchidism severity
based on testis position (i.e., inguinal, ectopic, intra-abdominal)
and the number of testes affected (i.e., unilateral, bilateral).
Potential confounders were identified based on directed acyclic
graphs (DAGs) and included maternal age (continuous), birth-
place, ethnicity, marital status, income, education, body mass
index (continuous), alcohol and caffeine consumption during
pregnancy (yes vs. no), smoking during pregnancy, gestational
diabetes, use of assisted reproductive techniques, child age at ex-
amination, and family history of cryptorchidism (as shown in
Table 1 and below).

Final models included variables that were loosely associated
with the outcome (p<0:20) in bivariate analyses (i.e., maternal
age, birthplace, ethnicity, marital status, income, highest level of
education, and paternal history of cryptorchidism). Missing val-
ues were imputed based on multiple imputation by chained equa-
tions (MICE) using predictive mean matching for missing
covariates and interval-censored regression for PBDE values
below the LOD (van Buuren et al. 1999). MICE can use a variety
of prediction models that may include variables of any form and
with varying levels of missingness to impute missing values.
Multiple imputation has been shown to generate valid parameter
estimates and, as opposed to single substitution, properly esti-
mates variance by taking into account the uncertainty associated
with imputed values (Lubin et al. 2004; Rubin 1976, 1987).
Estimates and their variance were estimated by generating 50
imputations and using Rubin’s formula (Rubin 1976, 1987). All
analyses were conducted using Intercooled STATA version 13.1
(StataCorp).

Results

Participant Characteristics
The mean maternal age at the time of interview was 33 years
(range, 18–48). As shown in Table 1, the majority of the mothers
were born in North America (73%) with 71% born in Canada,
Caucasian (72%), married or living as married (96%), and with a
household income �60,000=year (68%). Relative to controls,
cases were less likely to be Caucasian, were younger, had a lower
family income, and were more likely to have a paternal and fam-
ily history of cryptorchidism. There were no differences between
the geometric mean total hair PBDE levels by demographic char-
acteristics or family history of urogenital anomalies.

Hair PBDE Levels
The geometric means and distribution of the maternal PBDE hair
concentrations and their sums for the cases and controls are pro-
vided in Tables 2 and 3. Except for BDE-209, PBDE congeners
were moderately intercorrelated (r=0:36− 0:71; p<0:001; see
Table S1). BDE-47 and -209 had the highest levels, followed by
BDE-99 and -100, in both cases and controls. The geometric
means of the individual PBDEs was significantly higher in the

case mothers than the controls for BDE-99 (p<0:002), BDE-100
(p<0:001), and BDE-154 (p<0:04). Tables S2 and S3 provide
data for the case and control infants. Again, BDE-47 and -209
were the highest in both groups, followed by BDE-99 and -100.
PBDE concentrations in paired maternal and infant hair samples
were moderately correlated among both the cases and controls
(r=0:34− 0:71; p<0:01− 0:001) (see Table S4); cases also
showed a moderate correlation for the

P
PBDEs (r=0:41;

p<0:001). We found no association between hair PBDE concen-
trations and child age at examination, breastfeeding status or du-
ration, or hair coloring (data not shown).

Association between Hair PBDE Levels and Cryptorchidism
Figure 1 presents associations between individual BDEs as well
as total PBDE levels in maternal hair and the odds of cryptorchid-
ism. Every 10-fold increase in maternal hair BDE-99 [OR=2:53
(95% CI: 1.29. 4.95; p<0:007)], BDE-100 [OR=2:45 (95% CI:
1.31, 4.56; p<0:005)] or BDE-154 [OR=1:88 (95% CI: 1.08,
3.28; p<0:026)] was associated with elevated risk of cryptorch-
idism in male infants.

Multinomial Logistic Regression Model
Data on the number of affected testes and site of the testis for all
cryptorchid children (as well as the related geometric means of
maternal hair PBDEs) are presented in Table S5. Multinomial
logistic regression models confirmed an association of BDE-99,
-100, and -154 with inguinal localization of the testes (Table 4).
Statistical power to detect associations with ectopic (n=7) or
intra-abdominal (n=19) cryptorchidism was limited due to the
small number of cases. A similar lack of power was observed
when associations of PBDEs were evaluated based on whether
cryptorchidism was unilateral (one testis undescended; n=108)
versus bilateral (both testes undescended; n=17); significant
associations were observed only with the unilateral cases (data
not shown).

Discussion
We report here a significant association between maternal expo-
sure to BDE-99, -100, and -154 and elevated risks of cryptorchid-
ism in male infants. In vivo and in vitro studies of these
congeners have demonstrated potent anti-androgenic properties
of BDE-100, similar to those of the classical antiandrogen, fluta-
mide, and a 10- to 80-fold lower effect of BDE-99 (Hamers et al.
2006; Harju et al. 2007; Kojima et al. 2009; Lilienthal et al.
2006; Stoker et al. 2005; Yang et al. 2009). One published study
that included BDE-154 suggested that it has weak anti-
androgenic activity (Stoker et al. 2005). Although BDE-100 has
also been predicted to have weak estrogenic activities (Kojima
et al. 2009; Meerts et al. 2001; Papa et al. 2010; Yang et al.
2009), these activities are several orders of magnitude lower than
observed with estradiol. Overall, these data suggest that the anti-
androgenic properties of BDE-99, -100, and -154 may help to
explain their association with the disruption of testicular descent
in our study.

BDE-47 and -209 were also frequently detected in the hair
samples. BDE-47 has been shown to have significant anti-
androgenic activities (∼ 5- to 10-fold less than BDE-100 but
higher than BDE-99) in both in vivo and in vitro assays, whereas
BDE-209 has little to no activity (Hamers et al. 2006; Stoker
et al. 2005). The lack of an association between BDE-47 and risk
of cryptorchidism was surprising given our proposed mechanism.
This suggests that PBDEs may impact cryptorchidism by addi-
tional mechanisms of action. One possibility is that PBDEs are
actively metabolized in human tissues leading to the formation of
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Table 1. Geometric means and standard deviations of maternal hair RPBDEa concentrations by demographic characteristics and family history of urogenital
anomalies among cryptorchidism cases (n=137) and controls (n=158).

Cases Controls
No. (%) GMb (GSDc) No. (%) GM (GSD)

Birthplace
North America 92 (67) 50.3 (1.9) 124 (78) 43.6 (2.0)
South America 6 (4) 55.0 (2.0) 5 (3) 79.5 (1.7)
Europe 12 (9) 48.0 (2.0) 13 (8) 55.1 (2.0)
Other 27 (20) 52.7 (1.9) 16 (10) 43.9 (1.9)
Ethnic background
Caucasian 90 (69) 46.2 (1.9) 121 (81) 45.5 (2.0)*
Asian 8 (6) 48.4 (1.8) 10 (7) 41.2 (1.6)
Hispanic 12 (9) 52.5 (2.1) 5 (3) 72.1 (1.5)
Arab 9 (7) 68.0 (1.5) 3 (2) 32.3 (2.2)
Other 12 (9) 68.7 (1.8) 11 (7) 46.5 (2.2)
Marital status
Married/living as married 128 (94) 50.0 (1.9) 154 (97) 45.1 (2.0)
Single (never married) 6 (4) 42.4 (1.9) 1 (1) 31.9 (0.0)
Other 2 (1) 100.4 (1.0) 3 (2) 66.2 (1.2)
Household income (Canadian dollars)
0–29,999 10 (9) 59.8 (2.0) 4 (3) 50.2 (1.5)***
30,000–59,999 20 (18) 54.1 (1.8) 9 (7) 45.8 (2.3)
60,000–89,999 34 (30) 46.0 (1.9) 31 (20) 40.1 (1.9)
�90,000 49 (43) 45.0 (2.0) 88 (67) 47.8 (1.9)
Highest education level
Less than high school 63 (47) 53.4 (2.0) 37 (26) 37.1 (2.2)***
High school 41 (30) 49.8 (1.8) 62 (43) 45.7 (1.9)
More than high school 31 (23) 44.5 (1.8) 46 (32) 49.4 (2.0)
Drank during pregnancy
Yes 10 (9) 49.3 (1.9) 12 (8) 44.4 (1.6)
No 104 (91) 48.8 (2.0) 143 (92) 45.3 (2.0)
Smoked during pregnancy
Yes 3 (5) 73.2 (1.3) 4 (3) 45.3 (1.8)
No 58 (95) 47.8 (1.9) 154 (97) 45.3 (2.0)
Mother’s age (years)
<25 7 (5) 66.7 (2.0) 1 (1) 11.8 (0.0)**
25–29 30 (23) 47.8 (1.8) 23 (15) 46.5 (1.9)
30–34 46 (35) 49.4 (2.1) 74 (47) 47.3 (2.1)
35–39 41 (32) 49.0 (1.8) 44 (28) 41.2 (1.9)
�40 6 (5) 48.5 (1.6) 14 (9) 49.7 (1.7)
BMI (kg=m2)
<20 13 (11) 45.4 (1.8) 19 (13) 45.6 (2.3)
20–24:9 61 (50) 49.1 (2.0) 74 (51) 50.8 (1.8)
25–29:9 32 (26) 57.3 (1.9) 38 (26) 39.2 (1.9)
30–34:9 13 (11) 39.2 (2.1) 11 (8) 47.0 (2.4)
�35 4 (3) 58.2 (1.5) 3 (2) 32.4 (1.5)
Schooling (years)
<15 22 (29) 39.9 (2.1) 18 (16) 54.5 (2.3)
15–19 40 (53) 45.0 (1.8) 77 (68) 44.2 (1.9)
�20 14 (18) 46.0 (1.9) 19 (17) 59.6 (2.1)
Dependents (no.)
2 13 (11) 67.0 (2.1) 4 (3) 31.3 (2.0)
3 52 (42) 47.0 (2.1) 67 (49) 45.0 (2.2)
4 38 (31) 46.8 (1.8) 48 (35) 42.2 (1.8)
5 16 (13) 53.9 (1.8) 11 (8) 49.2 (2.2)
�6 4 (3) 51.8 (1.8) 7 (5) 47.9 (1.6)
Child’s age (months)
3–7:9 47 (34) 51.0 (1.8) 64 (42) 45.0 (1.9)
8–12:9 53 (39) 52.4 (1.9) 65 (42) 47.9 (2.0)
13–18 37 (27) 46.6 (2.0) 25 (16) 37.3 (2.0)
Paternal history of cryptorchidism/hypospadias
None 113 (90) 50.2 (1.9) 126 (98) 45.6 (2.0)*
Cryptorchidism 11 (9) 51.9 (1.8) 2 (2) 80.7 (3.4)
Hypospadias 1 (1) 67.2 (0.0) 0 (0) 0.0 (0.0)
Family history of cryptorchidism
Yes 18 (13) 62.3 (1.9) 5 (4) 32.7 (2.6)**
No 119 (87) 48.7 (1.9) 132 (96) 46.0 (2.0)
Family history of hypospadias
Yes 1 (1) 48.1 (0.0) 0 (0) 0.0 (0.0)
No 136 (99) 50.3 (1.9) 136 (100) 45.8 (2.0)

(Continued)
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hydroxylated and methoxylated BDEs; some of these metabolites
may be more bioactive than the parent compounds (Hamers et al.
2006; Hamers et al. 2008; Kojima et al. 2009; Meerts et al. 2001;
Yang et al. 2011). The fact that we measured the parent com-
pounds rather than their metabolites may explain in part why we
observed associations with some congeners but not others.

One limitation of our study is the inability to rule out the pos-
sible influence of alternative BFRs that may be co-eluting with
the PBDEs during the GC-MS analysis. For example, BDE-99
elutes very close to 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-
TBB), a component of Firemaster 550 (Fan et al. 2016; Liu et al.
2015; Stapleton et al. 2008). In addition, BDE-154 co-elutes with
2,20,4,40,5,50-hexabromobiphenyl (BB-153), amajor component in
previous commercial mixtures of polybrominated biphenyls
(Korytár et al. 2005). Given that we were using the same source
of hair for the calibration curves, it is possible that, although this
hair sample did not contain EH-TBB or BB-153, that other hair
samples did.

Two possible mechanisms may underlie the association
between exposure to specific PBDEs and cryptorchidism: a) com-
petition at the androgen receptor level, to block the effects of en-
dogenous androgens (e.g., in the gubernaculum muscle or
inguinoscrotal fat pad) (Barthold et al. 2016; Kaftanovskaya et al.
2012) and/or b) effects on the Leydig cell in the fetal testes,
resulting in endogenous androgen insufficiency (Houk et al.
2004; Wang et al. 2009). Stoker et al. (Stoker et al. 2005)
reported that BDE-99 and -100 display antagonistic properties in
the rat ventral prostate binding assay (IC50s of 33 and 3 lM,
respectively), while BDE-154 has a weak effect; they also found
that BDE-100 is a true competitor at the androgen receptor level

(Ki = 1lM) and inhibits dihydrotestosterone-induced androgen
receptor activation in a concentration-dependent manner. Similar
data for BDE-99 and -100 have been obtained by Hamers et al.
(2006) using an in vitro androgen receptor CALUX assay.
These findings indicate that BDE-100 is a potent competitive
inhibitor of the androgen receptor and that the other two BDEs
also have antiandrogen receptor properties. Direct effects of
these PBDE congeners on the human fetal testes have not been
reported. Thus, whether these congeners have effects on endog-
enous human androgen production is still unknown.

Cryptorchidism studies in animal models have clearly impli-
cated roles for both specific genes (Insl-3, Rxfp2) and the fetal
hormonal (androgenic) environment in the migration of testes
(Barthold 2008; Gorlov et al. 2002; Huang et al. 2012; Nef and
Parada 1999; Virtanen and Toppari 2008). However, similar evi-
dence in the human male is limited despite the fact that cryp-
torchidism is a relatively common finding in normal term
newborn males. Only a few of these infants have been shown to
have INSL-3 or RXFP2 gene mutations; in the rare newborns
with complete androgen insensitivity due to absence of a func-
tional androgen receptor, the testes remain in the inguinal or
groin area (Bay et al. 2011; Feng et al. 2009; Ferlin et al. 2009).
Failure to identify genome-wide significant markers associated
with nonsyndromic cryptorchidism has led to the recent sugges-
tion that cryptorchidism is the result of a complex multilocus
genetic susceptibility with the potential for additional risk from
in utero environmental exposures (Barthold et al. 2015).

It is well accepted that the intrauterine environment plays a
critical role in fetal development in general and there is increas-
ing evidence that this is true for cryptorchidism as well. A

Table 1. Continued

Cases Controls
No. (%) GMb (GSDc) No. (%) GM (GSD)

Use of assisted reproductive techniques
Ovulation induction 3 (2) 43.2 (1.9) 4 (3) 51.2 (1.9)
Artificial insemination 0 (0) 0.0 (0.0) 3 (2) 34.7 (1.9)
In vitro fertilization 6 (4) 49.2 (1.3) 6 (4) 43.8 (2.8)

None 126 (93) 51.0 (1.9) 135 (91) 45.9 (1.9)
Gestational diabetes
Yes 13 (10) 60.7 (1.5) 11 (7) 40.2 (2.1)
No 122 (90) 49.7 (1.9) 147 (93) 45.8 (2.0)

aSummed congeners include BDE-28, -47, -99, -100, -153, -154, and -209.
bGeometric mean.
cGeometric standard deviation. *p<0:05, **p<0:01, ***p<0:001 based on chi-squared tests comparing frequency distributions between total cases and controls.
RPBDE did not significantly differ across demographic characteristics.

Table 2. Detection frequencies, geometric means and percentiles of maternal hair PBDE concentrations among cases (n=137).

PBDEs
LODa, LOQb

(pg/mg)
Detect freqc

(%)
Quant freqd

(%)
GMe

(pg/mg)
95% CIf

(pg/mg)
Min

(pg/mg)
25th percentile

(pg/mg)
Median
(pg/mg)

75th percentile
(pg/mg)

Max
(pg/mg)

P
PBDEsg 50.27 45.12, 56.01 8.92 34.27 53.03 85.99 167.42

BDE-28 1.00, 4.00 74.45 24.09 2.13 1.84, 2.47 <LOD <LOD 2.08 3.77 17.98
BDE-47 3.00, 8.00 85.40 58.39 8.89 7.69, 10.28 <LOD 4.70 10.01 17.03 75.40
BDE-99 2.00, 7.00 86.13 56.20 7.14 6.14, 8.31 <LOD 4.09 7.94 12.71 50.10
BDE-100 1.00, 4.00 89.78 69.34 6.12 5.11, 7.32 <LOD 3.28 7.40 13.47 46.30
BDE-153 2.00, 5.00 71.53 34.31 3.63 3.17, 4.17 <LOD <LOD 3.50 7.06 21.65
BDE-154 1.00, 4.00 92.70 50.36 4.08 3.49, 4.76 <LOD 2.16 4.03 8.00 27.08
BDE-183 4.00, 12.00 40.15 5.11 4.32 3.92, 4.76 <LOD <LOD <LOD 7.38 24.79
BDE-209 1.00, 3.00 93.43 86.86 9.08 7.64, 10.80 <LOD 5.62 11.37 16.67 78.30
aLimit of detection.
bLimit of quantification.
cDetection frequency.
dQuantification frequency.
eGeometric mean.
f95% confidence interval.
gSummed congeners include BDE-28, -47, -99, -100, -153, -154, and -209.
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number of epidemiological studies have found significant associ-
ations between an increased risk of cryptorchidism and prematur-
ity, low birth weight and maternal gestational diabetes; the roles
of smoking, alcohol consumption, acetaminophen use, maternal
BMI, and assisted reproduction techniques remain controversial
(Zhang et al. 2015). There have also been studies suggesting a
specific role for environmental chemicals that readily cross the
placenta and have endocrine disruptor properties (e.g., PBDEs,
phthalates, tributyltin, bisphenol A, pesticides, perfluorinated
compounds, dioxins) but these have been limited to one or two
papers per chemical (Agopian et al. 2013; Bay and Anand-Ivell
2014; Christen et al. 2014; Doucet et al. 2009; Main et al. 2007;
Rouiller-Fabre et al. 2015; Virtanen and Adamsson 2012).

In general, studies have focused on the anti-androgenic and/or
pro-estrogenic properties of endocrine disrupting chemicals
because the androgenic in utero environment is crucial in the tes-
ticular migration process (Christen et al. 2014; Dean and Sharpe
2013; Jain and Singal 2013; Thankamony et al. 2014). Additional
evidence comes from the measurement of anogenital distance

(AGD) in humans. AGD is well-known to be related to prenatal
hormonal exposure and has been positively correlated with testis
size, sperm count, and testosterone levels (Dean and Sharpe
2013; Swan et al. 2005). Mean values of AGD in infant males
with cryptorchidism are significantly shorter than in healthy
boys, suggesting that global inhibition of androgen production
and/or action plays a role in the pathogenesis (Jain and Singal
2013; Thankamony et al. 2014).

We had hypothesized that the severity of the cryptorchidism
(abdominal location vs. inguinal/ectopic or unilateral vs. bilat-
eral) might be associated with maternal PBDE exposure.
Unfortunately, the numbers of abdominal and bilateral cases
were too low to derive a definitive conclusion. Despite this, our
study has three major strengths. First, because cryptorchidism
can spontaneously resolve in the first 6 months of life, we only
considered as cases those infants who were confirmed at the time
of orchidopexy; thus, we analyzed an unambiguous case cohort.
This population differs from the cases described in the cohort of
Danish mothers and infants where Main et al. (Main et al. 2007)

Table 3. Detection frequencies, geometric means and percentiles of maternal hair PBDE concentrations among controls (n=158).

PBDEs
LODa, LOQb

(pg/mg)
Detect freqc

(%)
Quant freqd

(%)
GMe

(pg/mg)
95% CIf

(pg/mg)
Min

(pg/mg)
25th percentile

(pg/mg)
Median
(pg/mg)

75th percentile
(pg/mg)

Max
(pg/mg)

P
PBDEsg 45.35 40.77, 50.43 8.57 30.76 44.48 74.39 247.52

BDE-28 1.00, 4.00 70.89 31.65 2.42 2.09, 2.81 <LOD <LOD 2.76 4.64 14.46
BDE-47 3.00, 8.00 85.44 60.76 9.03 9.03, 10.26 <LOD 6.07 9.58 15.35 72.70
BDE-99 2.00, 7.00 79.11 37.97 5.11 4.46, 5.86 <LOD 2.66 5.97 8.71 79.40
BDE-100 1.00, 4.00 91.14 49.37 4.09 3.56, 4.70 <LOD 2.33 3.99 7.45 57.97
BDE-153 2.00, 5.00 68.99 23.42 3.10 2.77, 3.47 <LOD <LOD 2.83 4.90 30.20
BDE-154 1.00, 4.00 76.58 46.84 3.28 2.76, 3.90 <LOD 1.08 3.57 6.49 42.59
BDE-183 4.00, 12.00 52.53 14.56 5.20 4.66, 5.79 <LOD <LOD 4.14 9.11 32.06
BDE-209 1.00, 3.00 83.54 74.05 7.07 5.67, 8.81 <LOD 2.77 8.45 18.19 226.65
aLimit of detection.
bLimit of quantification.
cDetection frequency.
dQuantification frequency.
eGeometric mean.
f95% confidence interval.
gSummed congeners include BDE-28, -47, -99, -100, -153, -154, and -209.

Figure 1. Unadjusted and adjusted association between maternal hair PBDE concentrations and odds of cryptorchidism. �p<0:05, �p<0:01. Error bars rep-
resent 95% confidence intervals. Adjusted models included maternal birthplace, ethnicity, marital status, income, age, education, and paternal history of
cryptorchidism.
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found a significant association between the levels of several
PBDEs in maternal breast milk (1–3 months postnatal) and cryp-
torchidism at birth: of n=29 cases, only 4 remained cryptorchid
at 3 months. Thus, the Danish study was primarily focused on
an association between maternal PBDE exposure and delayed
migration of the infant testes. Second, we used multiple imputa-
tion to impute PBDE values below the level of detection. This
method allowed us to take advantage of the intercorrelation
between congeners as well as the predictive power of other
covariates to impute undetected PBDE values while accounting
for the uncertainty of these values in variance estimates. Finally,
we collected data on a large number of potential confounders.

The major advantage of using hair as a biomarker of environ-
mental exposure is that it can be collected in a relatively noninva-
sive fashion. We have assumed that the PBDE levels in
3–18months postnatal maternal hair samples are reflective of ex-
posure during the gestational period. This assumption is based on
three strong pieces of evidence: a) the lack of an association
between maternal hair PBDEs in this study and child age at the
time of sample collection or breastfeeding duration; b) the stabil-
ity of PBDEs over months to years in serum (Castorina et al.
2011; Imm et al. 2009; Makey et al. 2014); and c) the long
half-lives of the PBDEs, especially the penta- and hexa-BDEs
(1–7 years) that we have found to be associated with risk of cryp-
torchidism (Thuresson et al. 2006; Trudel et al. 2011).

Unless treated by surgery very early in childhood, conse-
quences of cryptorchidism may include subfertility and testicu-
lar cancer in adulthood (Kollin and Ritzén 2014). Recently, a
European Union expert panel not only identified “strong toxico-
logical evidence for cryptorchidism due to prenatal PBDE ex-
posure,” but also estimated an annual cost-of-illness at
e117–130 million (Hauser et al. 2015). Thus, there are both
reproductive health and economic reasons to decrease the pres-
ent occurrence rate of cryptorchidism, possibly by decreasing

maternal exposure to specific environmental chemicals, such as
PBDEs, prior to and during gestation.

Conclusions
Our results suggest an association between maternal exposure to
BDE-99, -100, and -154, as measured in maternal hair, and abnor-
mal migration of testes in the male fetus; this may be due to the
anti-androgenic properties of these PBDEs, especially BDE-100.
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